Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Online Optimization for Multi-Agent Optimal Transport (1804.01572v6)

Published 4 Apr 2018 in math.OC

Abstract: We propose a scalable, distributed algorithm for the optimal transport of large-scale multi-agent systems. We formulate the problem as one of steering the collective towards a target probability measure while minimizing the total cost of transport, with the additional constraint of distributed implementation. Using optimal transport theory, we realize the solution as an iterative transport based on a proximal descent scheme. At each stage of the transport, the agents implement an online, distributed primal-dual algorithm to obtain local estimates of the Kantorovich potential for optimal transport from the current distribution of the collective to the target distribution. Using these estimates as their local objective functions, the agents then implement the transport by proximal descent. This two-step process is carried out recursively by the agents to converge asymptotically to the target distribution. We rigorously establish the underlying theoretical framework for the algorithm and test its behavior via numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.