Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning tensors from partial binary measurements (1804.00108v1)

Published 31 Mar 2018 in math.ST, cs.IT, math.IT, math.OC, and stat.TH

Abstract: In this paper we generalize the 1-bit matrix completion problem to higher order tensors. We prove that when $r=O(1)$ a bounded rank-$r$, order-$d$ tensor $T$ in $\mathbb{R}{N} \times \mathbb{R}{N} \times \cdots \times \mathbb{R}{N}$ can be estimated efficiently by only $m=O(Nd)$ binary measurements by regularizing its max-qnorm and M-norm as surrogates for its rank. We prove that similar to the matrix case, i.e., when $d=2$, the sample complexity of recovering a low-rank tensor from 1-bit measurements of a subset of its entries is the same as recovering it from unquantized measurements. Moreover, we show the advantage of using 1-bit tensor completion over matricization both theoretically and numerically. Specifically, we show how the 1-bit measurement model can be used for context-aware recommender systems.

Citations (34)

Summary

We haven't generated a summary for this paper yet.