Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incoherent Tensor Norms and Their Applications in Higher Order Tensor Completion (1606.03504v1)

Published 10 Jun 2016 in math.ST, cs.IT, math.IT, math.OC, stat.ML, and stat.TH

Abstract: In this paper, we investigate the sample size requirement for a general class of nuclear norm minimization methods for higher order tensor completion. We introduce a class of tensor norms by allowing for different levels of coherence, which allows us to leverage the incoherence of a tensor. In particular, we show that a $k$th order tensor of rank $r$ and dimension $d\times\cdots\times d$ can be recovered perfectly from as few as $O((r{(k-1)/2}d{3/2}+r{k-1}d)(\log(d))2)$ uniformly sampled entries through an appropriate incoherent nuclear norm minimization. Our results demonstrate some key differences between completing a matrix and a higher order tensor: They not only point to potential room for improvement over the usual nuclear norm minimization but also highlight the importance of explicitly accounting for incoherence, when dealing with higher order tensors.

Citations (53)

Summary

We haven't generated a summary for this paper yet.