High-Dimensional Causal Discovery Under non-Gaussianity (1803.11273v3)
Abstract: We consider graphical models based on a recursive system of linear structural equations. This implies that there is an ordering, $\sigma$, of the variables such that each observed variable $Y_v$ is a linear function of a variable specific error term and the other observed variables $Y_u$ with $\sigma(u) < \sigma (v)$. The causal relationships, i.e., which other variables the linear functions depend on, can be described using a directed graph. It has been previously shown that when the variable specific error terms are non-Gaussian, the exact causal graph, as opposed to a Markov equivalence class, can be consistently estimated from observational data. We propose an algorithm that yields consistent estimates of the graph also in high-dimensional settings in which the number of variables may grow at a faster rate than the number of observations, but in which the underlying causal structure features suitable sparsity; specifically, the maximum in-degree of the graph is controlled. Our theoretical analysis is couched in the setting of log-concave error distributions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.