High-Dimensional Causal Discovery Under non-Gaussianity
Abstract: We consider graphical models based on a recursive system of linear structural equations. This implies that there is an ordering, $\sigma$, of the variables such that each observed variable $Y_v$ is a linear function of a variable specific error term and the other observed variables $Y_u$ with $\sigma(u) < \sigma (v)$. The causal relationships, i.e., which other variables the linear functions depend on, can be described using a directed graph. It has been previously shown that when the variable specific error terms are non-Gaussian, the exact causal graph, as opposed to a Markov equivalence class, can be consistently estimated from observational data. We propose an algorithm that yields consistent estimates of the graph also in high-dimensional settings in which the number of variables may grow at a faster rate than the number of observations, but in which the underlying causal structure features suitable sparsity; specifically, the maximum in-degree of the graph is controlled. Our theoretical analysis is couched in the setting of log-concave error distributions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.