Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Convex Matrix Completion Against a Semi-Random Adversary (1803.10846v2)

Published 28 Mar 2018 in cs.LG, cs.DS, math.OC, and stat.ML

Abstract: Matrix completion is a well-studied problem with many machine learning applications. In practice, the problem is often solved by non-convex optimization algorithms. However, the current theoretical analysis for non-convex algorithms relies heavily on the assumption that every entry is observed with exactly the same probability $p$, which is not realistic in practice. In this paper, we investigate a more realistic semi-random model, where the probability of observing each entry is at least $p$. Even with this mild semi-random perturbation, we can construct counter-examples where existing non-convex algorithms get stuck in bad local optima. In light of the negative results, we propose a pre-processing step that tries to re-weight the semi-random input, so that it becomes "similar" to a random input. We give a nearly-linear time algorithm for this problem, and show that after our pre-processing, all the local minima of the non-convex objective can be used to approximately recover the underlying ground-truth matrix.

Citations (23)

Summary

We haven't generated a summary for this paper yet.