Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parton construction of a wave function in the anti-Pfaffian phase (1803.10427v2)

Published 28 Mar 2018 in cond-mat.str-el

Abstract: In this work we propose a parton state as a candidate state to describe the fractional quantum Hall effect in the half-filled second Landau level. The wave function for this parton state is $\mathcal{P}{\rm LLL} \Phi{1}3[\Phi_{2}{*}]{2}\sim\Psi{2}{2/3}/\Phi{1}$ and in the spherical geometry it occurs at the same flux as the anti-Pfaffian state. This state has a good overlap with the anti-Pfaffian state and with the ground state obtained by exact diagonalization, using the second Landau level Coulomb interaction pseudopotentials for an ordinary semiconductor such as GaAs. By calculating the entanglement spectrum we show that this state lies in the same phase as the anti-Pfaffian state. A major advantage of this parton state is that its wave function can be evaluated for large systems, which makes it amenable to variational calculations. In the appendix of this work we have numerically assessed the validity of another candidate state at filling factor $\nu=5/2$, namely the particle-hole-symmetric Pfaffian (PH-Pfaffian) state. We find that the proposed candidate wave function for the PH-Pfaffian state is particle-hole symmetric to a high degree but it does not appear to arise as the ground state of any simple Hamiltonian with two-body interactions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.