Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Almost sure, L_1- and L_2-growth behavior of supercritical multi-type continuous state and continuous time branching processes with immigration (1803.10176v3)

Published 27 Mar 2018 in math.PR

Abstract: Under a first order moment condition on the immigration mechanism, we show that an appropriately scaled supercritical and irreducible multi-type continuous state and continuous time branching process with immigration (CBI process) converges almost surely. If an $x \log(x)$ moment condition on the branching mechanism does not hold, then the limit is zero. If this $x \log(x)$ moment condition holds, then we prove $L_1$ convergence as well. The projection of the limit on any left non-Perron eigenvector of the branching mean matrix is vanishing. If, in addition, a suitable extra power moment condition on the branching mechanism holds, then we provide the correct scaling for the projection of a CBI process on certain left non-Perron eigenvectors of the branching mean matrix in order to have almost sure and $L_1$ limit. Moreover, under a second order moment condition on the branching and immigration mechanisms, we prove $L_2$ convergence of an appropriately scaled process and the above mentioned projections as well. A representation of the limits is also provided under the same moment conditions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.