Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient descent in Gaussian random fields as a toy model for high-dimensional optimisation in deep learning (1803.09119v1)

Published 24 Mar 2018 in stat.ML and cs.LG

Abstract: In this paper we model the loss function of high-dimensional optimization problems by a Gaussian random field, or equivalently a Gaussian process. Our aim is to study gradient descent in such loss functions or energy landscapes and compare it to results obtained from real high-dimensional optimization problems such as encountered in deep learning. In particular, we analyze the distribution of the improved loss function after a step of gradient descent, provide analytic expressions for the moments as well as prove asymptotic normality as the dimension of the parameter space becomes large. Moreover, we compare this with the expectation of the global minimum of the landscape obtained by means of the Euler characteristic of excursion sets. Besides complementing our analytical findings with numerical results from simulated Gaussian random fields, we also compare it to loss functions obtained from optimisation problems on synthetic and real data sets by proposing a "black box" random field toy-model for a deep neural network loss function.

Citations (2)

Summary

We haven't generated a summary for this paper yet.