Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent properties of the local geometry of neural loss landscapes (1910.05929v1)

Published 14 Oct 2019 in cs.LG, cs.NE, and stat.ML

Abstract: The local geometry of high dimensional neural network loss landscapes can both challenge our cherished theoretical intuitions as well as dramatically impact the practical success of neural network training. Indeed recent works have observed 4 striking local properties of neural loss landscapes on classification tasks: (1) the landscape exhibits exactly $C$ directions of high positive curvature, where $C$ is the number of classes; (2) gradient directions are largely confined to this extremely low dimensional subspace of positive Hessian curvature, leaving the vast majority of directions in weight space unexplored; (3) gradient descent transiently explores intermediate regions of higher positive curvature before eventually finding flatter minima; (4) training can be successful even when confined to low dimensional {\it random} affine hyperplanes, as long as these hyperplanes intersect a Goldilocks zone of higher than average curvature. We develop a simple theoretical model of gradients and Hessians, justified by numerical experiments on architectures and datasets used in practice, that {\it simultaneously} accounts for all $4$ of these surprising and seemingly unrelated properties. Our unified model provides conceptual insights into the emergence of these properties and makes connections with diverse topics in neural networks, random matrix theory, and spin glasses, including the neural tangent kernel, BBP phase transitions, and Derrida's random energy model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Stanislav Fort (30 papers)
  2. Surya Ganguli (73 papers)
Citations (46)

Summary

We haven't generated a summary for this paper yet.