Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RF-Based Low-SNR Classification of UAVs Using Convolutional Neural Networks (2009.05519v2)

Published 11 Sep 2020 in eess.SP and eess.IV

Abstract: This paper investigates the problem of classification of unmanned aerial vehicles (UAVs) from radio frequency (RF) fingerprints at the low signal-to-noise ratio (SNR) regime. We use convolutional neural networks (CNNs) trained with both RF time-series images and the spectrograms of 15 different off-the-shelf drone controller RF signals. When using time-series signal images, the CNN extracts features from the signal transient and envelope. As the SNR decreases, this approach fails dramatically because the information in the transient is lost in the noise, and the envelope is distorted heavily. In contrast to time-series representation of the RF signals, with spectrograms, it is possible to focus only on the desired frequency interval, i.e., 2.4 GHz ISM band, and filter out any other signal component outside of this band. These advantages provide a notable performance improvement over the time-series signals-based methods. To further increase the classification accuracy of the spectrogram-based CNN, we denoise the spectrogram images by truncating them to a limited spectral density interval. Creating a single model using spectrogram images of noisy signals and tuning the CNN model parameters, we achieve a classification accuracy varying from 92% to 100% for an SNR range from -10 dB to 30 dB, which significantly outperforms the existing approaches to our best knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ender Ozturk (9 papers)
  2. Fatih Erden (24 papers)
  3. Ismail Guvenc (175 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.