Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Existence of (Markovian) solutions to martingale problems associated with Lévy-type operators (1803.05646v1)

Published 15 Mar 2018 in math.PR

Abstract: Let $A$ be a pseudo-differential operator with symbol $q(x,\xi)$. In this paper we derive sufficient conditions which ensure the existence of a solution to the $(A,C_c{\infty}(\mathbb{R}d))$-martingale problem. If the symbol $q$ depends continuously on the space variable $x$, then the existence of solutions is well understood, and therefore the focus lies on martingale problems for pseudo-differential operators with discontinuous coefficients. We prove an existence result which allows us, in particular, to obtain new insights on the existence of weak solutions to a class of L\'evy-driven SDEs with Borel measurable coefficients and on the the existence of stable-like processes with discontinuous coefficients. Moreover, we establish a Markovian selection theorem which shows that - under mild assumptions - the $(A,C_c{\infty}(\mathbb{R}d))$-martingale problem gives rise to a strong Markov process. The result applies, in particular, to L\'evy-driven SDEs. We illustrate the Markovian selection theorem with applications in the theory of non-local operators and equations; in particular, we establish under weak regularity assumptions a Harnack inequality for non-local operators of variable order.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)