Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Random walks on dynamic configuration models: a trichotomy (1803.04824v1)

Published 13 Mar 2018 in math.PR

Abstract: We consider a dynamic random graph on $n$ vertices that is obtained by starting from a random graph generated according to the configuration model with a prescribed degree sequence and at each unit of time randomly rewiring a fraction $\alpha_n$ of the edges. We are interested in the mixing time of a random walk without backtracking on this dynamic random graph in the limit as $n\to\infty$, when $\alpha_n$ is chosen such that $\lim_{n\to\infty} \alpha_n (\log n)2 = \beta \in [0,\infty]$. In [1] we found that, under mild regularity conditions on the degree sequence, the mixing time is of order $1/\sqrt{\alpha_n}$ when $\beta=\infty$. In the present paper we investigate what happens when $\beta \in [0,\infty)$. It turns out that the mixing time is of order $\log n$, with the scaled mixing time exhibiting a one-sided cutoff when $\beta \in (0,\infty)$ and a two-sided cutoff when $\beta=0$. The occurrence of a one-sided cutoff is a rare phenomenon. In our setting it comes from a competition between the time scales of mixing on the static graph, as identified by Ben-Hamou and Salez [4], and the regeneration time of first stepping across a rewired edge.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.