Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Ising distribution as a latent variable model (1803.02598v4)

Published 7 Mar 2018 in cond-mat.dis-nn, q-bio.NC, and stat.ML

Abstract: During the past decades, the Ising distribution has attracted interest in many applied disciplines, as the maximum entropy distribution associated to any set of correlated binary (spin') variables with observed means and covariances. However, numerically speaking, the Ising distribution is unpractical, so alternative models are often preferred to handle correlated binary data. One popular alternative, especially in life sciences, is the Cox distribution (or the closely related dichotomized Gaussian distribution and log-normal Cox point process), where the spins are generated independently conditioned on the drawing of a latent variable with a multivariate normal distribution. This article explores the conditions for a principled replacement of the Ising distribution by a Cox distribution. It shows that the Ising distribution itself can be treated as a latent variable model, and it explores when this latent variable has a quasi-normal distribution. A variational approach to this question reveals a formal link with classic mean-field methods, especially Opper and Winther's adaptive TAP approximation. This link is confirmed by weak coupling (Plefka) expansions of the different approximations and then by numerical tests. Overall, this study suggests that an Ising distribution can be replaced by a Cox distribution in practical applications, precisely when its parameters lie in themean-field domain'.

Citations (3)

Summary

We haven't generated a summary for this paper yet.