Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A statistical physics approach to learning curves for the Inverse Ising problem (1705.05403v1)

Published 15 May 2017 in cond-mat.dis-nn and stat.ML

Abstract: Using methods of statistical physics, we analyse the error of learning couplings in large Ising models from independent data (the inverse Ising problem). We concentrate on learning based on local cost functions, such as the pseudo-likelihood method for which the couplings are inferred independently for each spin. Assuming that the data are generated from a true Ising model, we compute the reconstruction error of the couplings using a combination of the replica method with the cavity approach for densely connected systems. We show that an explicit estimator based on a quadratic cost function achieves minimal reconstruction error, but requires the length of the true coupling vector as prior knowledge. A simple mean field estimator of the couplings which does not need such knowledge is asymptotically optimal, i.e. when the number of observations is much large than the number of spins. Comparison of the theory with numerical simulations shows excellent agreement for data generated from two models with random couplings in the high temperature region: a model with independent couplings (Sherrington-Kirkpatrick model), and a model where the matrix of couplings has a Wishart distribution.

Citations (13)

Summary

We haven't generated a summary for this paper yet.