Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Extracting useful information from connected vehicle data: An empirical study of driving volatility measures and crash frequency at intersections (1803.02433v2)

Published 6 Mar 2018 in stat.AP

Abstract: With the emergence of high-frequency connected and automated vehicle data, analysts have become able to extract useful information from them. To this end, the concept of "driving volatility" is defined and explored as deviation from the norm. Several measures of dispersion and variation can be computed in different ways using vehicles' instantaneous speed, acceleration, and jerk observed at intersections. This study explores different measures of volatility, representing newly available surrogate measures of safety, by combining data from the Michigan Safety Pilot Deployment of connected vehicles with crash and inventory data at several intersections. The intersection data was error-checked and verified for accuracy. Then, for each intersection, 37 different measures of volatility were calculated. These volatilities were then used to explain crash frequencies at intersection by estimating fixed and random parameter Poisson regression models. Results show that an increase in three measures of driving volatility are positively associated with higher intersection crash frequency, controlling for exposure variables and geometric features. More intersection crashes were associated with higher percentages of vehicle data points (speed & acceleration) lying beyond threshold-bands. These bands were created using mean plus two standard deviations. Furthermore, a higher magnitude of time-varying stochastic volatility of vehicle speeds when they pass through the intersection is associated with higher crash frequencies. These measures can be used to locate intersections with high driving volatilities, i.e., hot-spots where crashes are waiting to happen. Therefore, a deeper analysis of these intersections can be undertaken and proactive safety countermeasures considered at high volatility locations to enhance safety.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.