Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIMO Graph Filters for Convolutional Neural Networks (1803.02247v1)

Published 6 Mar 2018 in cs.LG, eess.SP, and stat.ML

Abstract: Superior performance and ease of implementation have fostered the adoption of Convolutional Neural Networks (CNNs) for a wide array of inference and reconstruction tasks. CNNs implement three basic blocks: convolution, pooling and pointwise nonlinearity. Since the two first operations are well-defined only on regular-structured data such as audio or images, application of CNNs to contemporary datasets where the information is defined in irregular domains is challenging. This paper investigates CNNs architectures to operate on signals whose support can be modeled using a graph. Architectures that replace the regular convolution with a so-called linear shift-invariant graph filter have been recently proposed. This paper goes one step further and, under the framework of multiple-input multiple-output (MIMO) graph filters, imposes additional structure on the adopted graph filters, to obtain three new (more parsimonious) architectures. The proposed architectures result in a lower number of model parameters, reducing the computational complexity, facilitating the training, and mitigating the risk of overfitting. Simulations show that the proposed simpler architectures achieve similar performance as more complex models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fernando Gama (43 papers)
  2. Antonio G. Marques (78 papers)
  3. Alejandro Ribeiro (281 papers)
  4. Geert Leus (98 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.