Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Convolutional Neural Network into graph space (2002.09285v3)

Published 20 Feb 2020 in cs.CV, cs.LG, and cs.NE

Abstract: Convolutional neural networks (CNNs), in a few decades, have outperformed the existing state of the art methods in classification context. However, in the way they were formalised, CNNs are bound to operate on euclidean spaces. Indeed, convolution is a signal operation that are defined on euclidean spaces. This has restricted deep learning main use to euclidean-defined data such as sound or image. And yet, numerous computer application fields (among which network analysis, computational social science, chemo-informatics or computer graphics) induce non-euclideanly defined data such as graphs, networks or manifolds. In this paper we propose a new convolution neural network architecture, defined directly into graph space. Convolution and pooling operators are defined in graph domain. We show its usability in a back-propagation context. Experimental results show that our model performance is at state of the art level on simple tasks. It shows robustness with respect to graph domain changes and improvement with respect to other euclidean and non-euclidean convolutional architectures.

Citations (2)

Summary

We haven't generated a summary for this paper yet.