Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intent-aware Multi-agent Reinforcement Learning (1803.02018v1)

Published 6 Mar 2018 in cs.AI

Abstract: This paper proposes an intent-aware multi-agent planning framework as well as a learning algorithm. Under this framework, an agent plans in the goal space to maximize the expected utility. The planning process takes the belief of other agents' intents into consideration. Instead of formulating the learning problem as a partially observable Markov decision process (POMDP), we propose a simple but effective linear function approximation of the utility function. It is based on the observation that for humans, other people's intents will pose an influence on our utility for a goal. The proposed framework has several major advantages: i) it is computationally feasible and guaranteed to converge. ii) It can easily integrate existing intent prediction and low-level planning algorithms. iii) It does not suffer from sparse feedbacks in the action space. We experiment our algorithm in a real-world problem that is non-episodic, and the number of agents and goals can vary over time. Our algorithm is trained in a scene in which aerial robots and humans interact, and tested in a novel scene with a different environment. Experimental results show that our algorithm achieves the best performance and human-like behaviors emerge during the dynamic process.

Citations (28)

Summary

We haven't generated a summary for this paper yet.