Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Admissible perturbations and false instabilities in PT-symmetric quantum systems (1803.01949v1)

Published 5 Mar 2018 in quant-ph, math-ph, math.MP, math.NA, and physics.optics

Abstract: In ${\cal PT}-$symmetric quantum mechanics one of the most characteristic mathematical features of the formalism is the explicit Hamiltonian-dependence of the physical Hilbert space of states ${\cal H}={\cal H}(H)$. Some of the most important physical consequences are discussed, with emphasis on the dynamical regime in which the system is close to the quantum phase transition. Consistent perturbation treatment of such a regime is proposed. An illustrative application of the innovated perturbation theory to a non-Hermitian but ${\cal PT}-$symmetric user-friendly family of $J-$parametric "discrete anharmonic" quantum Hamiltonians $H=H(\vec{\lambda})$ is given. The models are shown to admit the standard probabilistic interpretation if and only if the parameters remain compatible with the reality of the spectrum, $\vec{\lambda} \in {\cal D}{(physical)}$. In contradiction to the conventional wisdom the systems are shown stable with respect to the admissible perturbations lying inside the domain ${\cal D}{(physical)}$. This observation holds even in the immediate vicinity of the phase-transition boundaries $\partial {\cal D}{(physical)}$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)