Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Retinal Image Enhancement Technique for Blood Vessel Segmentation Algorithm (1803.00036v1)

Published 28 Feb 2018 in cs.CV

Abstract: The morphology of blood vessels in retinal fundus images is an important indicator of diseases like glaucoma, hypertension and diabetic retinopathy. The accuracy of retinal blood vessels segmentation affects the quality of retinal image analysis which is used in diagnosis methods in modern ophthalmology. Contrast enhancement is one of the crucial steps in any of retinal blood vessel segmentation approaches. The reliability of the segmentation depends on the consistency of the contrast over the image. This paper presents an assessment of the suitability of a recently invented spatially adaptive contrast enhancement technique for enhancing retinal fundus images for blood vessel segmentation. The enhancement technique was integrated with a variant of Tyler Coye algorithm, which has been improved with Hough line transformation based vessel reconstruction method. The proposed approach was evaluated on two public datasets STARE and DRIVE. The assessment was done by comparing the segmentation performance with five widely used contrast enhancement techniques based on wavelet transform, contrast limited histogram equalization, local normalization, linear un-sharp masking and contourlet transform. The results revealed that the assessed enhancement technique is well suited for the application and also outperforms all compared techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (57)

Summary

We haven't generated a summary for this paper yet.