Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pathwise mild solutions for quasilinear stochastic partial differential equations (1802.10016v2)

Published 27 Feb 2018 in math.PR

Abstract: Stochastic partial differential equations (SPDEs) have become a key modelling tool in applications. Yet, there are many classes of SPDEs, where the existence and regularity theory for solutions is not completely developed. Here we contribute to this aspect and prove the existence of mild solutions for a broad class of quasilinear Cauchy problems, including - among others - cross-diffusion systems as a key application. Our solutions are local-in-time and are derived via a fixed point argument in suitable function spaces. The key idea is to combine the classical theory of deterministic quasilinear parabolic partial differential equations (PDEs) with recent theory of evolution semigroups. We also show, how to apply our theory to the Shigesada-Kawasaki-Teramoto (SKT) model. Furthermore, we provide examples of blow-up and ill-posed operators, which can occur after finite-time showing that solutions can only be local-in-time for general quasilinear SPDEs, while they might be global-in-time for special subclasses of problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.