Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solutions for Nonconvex Distributed Optimization

Published 25 Feb 2018 in math.OC, cs.IT, and math.IT | (1802.08941v1)

Abstract: In this work, we study two first-order primal-dual based algorithms, the Gradient Primal-Dual Algorithm (GPDA) and the Gradient Alternating Direction Method of Multipliers (GADMM), for solving a class of linearly constrained non-convex optimization problems. We show that with random initialization of the primal and dual variables, both algorithms are able to compute second-order stationary solutions (ss2) with probability one. This is the first result showing that primal-dual algorithm is capable of finding ss2 when only using first-order information, it also extends the existing results for first-order, but primal-only algorithms. An important implication of our result is that it also gives rise to the first global convergence result to the ss2, for two classes of unconstrained distributed non-convex learning problems over multi-agent networks.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.