Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

First-order methods for constrained convex programming based on linearized augmented Lagrangian function (1711.08020v1)

Published 21 Nov 2017 in math.OC and cs.DS

Abstract: First-order methods have been popularly used for solving large-scale problems. However, many existing works only consider unconstrained problems or those with simple constraint. In this paper, we develop two first-order methods for constrained convex programs, for which the constraint set is represented by affine equations and smooth nonlinear inequalities. Both methods are based on the classic augmented Lagrangian function. They update the multipliers in the same way as the augmented Lagrangian method (ALM) but employ different primal variable updates. The first method, at each iteration, performs a single proximal gradient step to the primal variable, and the second method is a block update version of the first one. For the first method, we establish its global iterate convergence as well as global sublinear and local linear convergence, and for the second method, we show a global sublinear convergence result in expectation. Numerical experiments are carried out on the basis pursuit denoising and a convex quadratically constrained quadratic program to show the empirical performance of the proposed methods. Their numerical behaviors closely match the established theoretical results.

Citations (43)

Summary

We haven't generated a summary for this paper yet.