Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A gradient enhanced $\ell_1$-minimization for sparse approximation of polynomial chaos expansions (1802.08837v1)

Published 24 Feb 2018 in math.NA

Abstract: We investigate a gradient-enhanced $\ell_1$-minimization for constructing sparse polynomial chaos expansions. In addition to function evaluations, measurements of the function gradient is also included to accelerate the identification of expansion coefficients. By designing appropriate preconditioners to the measurement matrix, we show gradient-enhanced $\ell_1$ minimization leads to stable and accurate coefficient recovery. The framework for designing preconditioners is quite general and it applies to recover of functions whose domain is bounded or unbounded. Comparisons between the gradient enhanced approach and the standard $\ell_1$-minimization are also presented and numerical examples suggest that the inclusion of derivative information can guarantee sparse recovery at a reduced computational cost.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.