Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Integral Representations of Gaussian Processes (1802.07528v4)

Published 21 Feb 2018 in stat.ML and cs.LG

Abstract: We propose a representation of Gaussian processes (GPs) based on powers of the integral operator defined by a kernel function, we call these stochastic processes integral Gaussian processes (IGPs). Sample paths from IGPs are functions contained within the reproducing kernel Hilbert space (RKHS) defined by the kernel function, in contrast sample paths from the standard GP are not functions within the RKHS. We develop computationally efficient non-parametric regression models based on IGPs. The main innovation in our regression algorithm is the construction of a low dimensional subspace that captures the information most relevant to explaining variation in the response. We use ideas from supervised dimension reduction to compute this subspace. The result of using the construction we propose involves significant improvements in the computational complexity of estimating kernel hyper-parameters as well as reducing the prediction variance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.