Sample Path Regularity of Gaussian Processes from the Covariance Kernel (2312.14886v2)
Abstract: Gaussian processes (GPs) are the most common formalism for defining probability distributions over spaces of functions. While applications of GPs are myriad, a comprehensive understanding of GP sample paths, i.e. the function spaces over which they define a probability measure, is lacking. In practice, GPs are not constructed through a probability measure, but instead through a mean function and a covariance kernel. In this paper we provide necessary and sufficient conditions on the covariance kernel for the sample paths of the corresponding GP to attain a given regularity. We use the framework of H\"older regularity as it grants particularly straightforward conditions, which simplify further in the cases of stationary and isotropic GPs. We then demonstrate that our results allow for novel and unusually tight characterisations of the sample path regularities of the GPs commonly used in machine learning applications, such as the Mat\'ern GPs.
- Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation, 1965. ISBN 978-0-486-61272-0.
- Random Fields and Geometry. Springer Monographs in Mathematics. Springer, 2007. ISBN 978-0-387-48112-8 978-0-387-48116-6. doi: 10.1007/978-0-387-48116-6.
- Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Statistics & Probability Letters, 94(C):230–235, 2014. doi: 10.1016/j.spl.2014.07.030.
- Xavier Fernique. Régularité des trajectoires des fonctions aleatoires gaussiennes. In Ecole d’Eté de Probabilités de Saint-Flour IV—1974, Lecture Notes in Mathematics, pages 1–96. Springer, 1975. ISBN 978-3-540-37600-2. doi: 10.1007/BFb0080190.
- Generalised filtering. Mathematical Problems in Engineering, 2010:1–34, 2010. ISSN 1024-123X, 1563-5147. doi: 10.1155/2010/621670.
- Tilmann Gneiting. On the derivatives of radial positive definite functions. Journal of Mathematical Analysis and Applications, 236(1):86–93, 1999. ISSN 0022-247X. doi: 10.1006/jmaa.1999.6434.
- Collective behavior from surprise minimization. 2023. doi: 10.48550/arXiv.2307.14804.
- Iain Henderson. Sobolev regularity of Gaussian random fields. Journal of Functional Analysis, 286(3):110241, 2024. ISSN 0022-1236. doi: 10.1016/j.jfa.2023.110241.
- Gaussian processes and kernel methods: a review on connections and equivalences. 2018. doi: 10.48550/arXiv.1807.02582.
- Achim Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer, 2014. ISBN 978-1-4471-5360-3 978-1-4471-5361-0. doi: 10.1007/978-1-4471-5361-0.
- Physics-informed Gaussian process regression generalizes linear PDE solvers. 2023. doi: 10.48550/arXiv.2307.14804.
- Jürgen Potthoff. Sample properties of random fields. II. Continuity. Communications on Stochastic Analysis, 3(3), 2009. ISSN 0973-9599. doi: 10.31390/cosa.3.3.02.
- Jürgen Potthoff. Sample properties of random fields III: differentiability. Communications on Stochastic Analysis, 4(3), 2010. ISSN 2688-6669. doi: 10.31390/cosa.4.3.03.
- Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005. ISBN 978-0-262-25683-4. doi: 10.7551/mitpress/3206.001.0001.
- Michael Scheuerer. A Comparison of Models and Methods for Spatial Interpolation in Statistics and Numerical Analysis. PhD thesis, 2010a.
- Michael Scheuerer. Regularity of the sample paths of a general second order random field. Stochastic Processes and their Applications, 120(10):1879–1897, 2010b. ISSN 0304-4149. doi: 10.1016/j.spa.2010.05.009.
- Bayesian numerical methods for nonlinear partial differential equations. Statistics and Computing, 31(5):55, 2021. ISSN 1573-1375.
- Holger Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2004. ISBN 978-0-521-84335-5. doi: 10.1017/CBO9780511617539.