Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Graph Compression: Stochastic Block Models (2006.02643v3)

Published 4 Jun 2020 in cs.IT, cs.DB, math.IT, math.ST, and stat.TH

Abstract: Motivated by the prevalent data science applications of processing large-scale graph data such as social networks and biological networks, this paper investigates lossless compression of data in the form of a labeled graph. Particularly, we consider a widely used random graph model, stochastic block model (SBM), which captures the clustering effects in social networks. An information-theoretic universal compression framework is applied, in which one aims to design a single compressor that achieves the asymptotically optimal compression rate, for every SBM distribution, without knowing the parameters of the SBM. Such a graph compressor is proposed in this paper, which universally achieves the optimal compression rate with polynomial time complexity for a wide class of SBMs. Existing universal compression techniques are developed mostly for stationary ergodic one-dimensional sequences. However, the adjacency matrix of SBM has complex two-dimensional correlations. The challenge is alleviated through a carefully designed transform that converts two-dimensional correlated data into almost i.i.d. submatrices. The sequence of submatrices is then compressed by a Krichevsky--Trofimov compressor, whose length analysis is generalized to identically distributed but arbitrarily correlated sequences. In four benchmark graph datasets, the compressed files from competing algorithms take 2.4 to 27 times the space needed by the proposed scheme.

Citations (6)

Summary

We haven't generated a summary for this paper yet.