Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability and convergence of second order backward differentiation schemes for parabolic Hamilton-Jacobi-Bellman equations

Published 20 Feb 2018 in math.NA | (1802.07146v1)

Abstract: We study a second order BDF (Backward Differentiation Formula) scheme for the numerical approximation of parabolic HJB (Hamilton-Jacobi-Bellman) equations. The scheme under consideration is implicit, non-monotone, and second order accurate in time and space. The lack of monotonicity prevents the use of well-known convergence results for solutions in the viscosity sense. In this work, we establish rigorous stability results in a general nonlinear setting as well as convergence results for some particular cases with additional regularity assumptions. While most results are presented for one-dimensional, linear parabolic and non-linear HJB equations, some results are also extended to multiple dimensions and to Isaacs equations. Numerical tests are included to validate the method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.