Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Decidability of Reachability in Linear Time-Invariant Systems (1802.06575v2)

Published 19 Feb 2018 in math.OC, cs.DM, cs.LO, and cs.SY

Abstract: We consider the decidability of state-to-state reachability in linear time-invariant control systems over discrete time. We analyse this problem with respect to the allowable control sets, which in general are assumed to be defined by boolean combinations of linear inequalities. Decidability of the version of the reachability problem in which control sets are affine subspaces of $\mathbb{R}n$ is a fundamental result in control theory. Our first result is that reachability is undecidable if the set of controls is a finite union of affine subspaces. We also consider versions of the reachability problem in which (i)~the set of controls consists of a single affine subspace together with the origin and (ii)~the set of controls is a convex polytope. In these two cases we respectively show that the reachability problem is as hard as Skolem's Problem and the Positivity Problem for linear recurrence sequences (whose decidability has been open for several decades). Our main contribution is to show decidability of a version of the reachability problem in which control sets are convex polytopes, under certain spectral assumptions on the transition matrix.

Citations (28)

Summary

We haven't generated a summary for this paper yet.