Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How hard is it to verify flat affine counter systems with the finite monoid property ? (1605.05836v1)

Published 19 May 2016 in cs.CC and cs.LO

Abstract: We study several decision problems for counter systems with guards defined by convex polyhedra and updates defined by affine transformations. In general, the reachability problem is undecidable for such systems. Decidability can be achieved by imposing two restrictions: (i) the control structure of the counter system is flat, meaning that nested loops are forbidden, and (ii) the set of matrix powers is finite, for any affine update matrix in the system. We provide tight complexity bounds for several decision problems of such systems, by proving that reachability and model checking for Past Linear Temporal Logic are complete for the second level of the polynomial hierarchy $\SigmaP_2$, while model checking for First Order Logic is PSPACE-complete.

Citations (5)

Summary

We haven't generated a summary for this paper yet.