Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence of a degenerate microscopic dynamics to the porous medium equation (1802.05912v4)

Published 16 Feb 2018 in math.PR, cond-mat.stat-mech, and math.AP

Abstract: We derive the porous medium equation from an interacting particle system which belongs to the family of exclusion processes, with nearest neighbor exchanges. The particles follow a degenerate dynamics, in the sense that the jump rates can vanish for certain configurations, and there exist blocked configurations that cannot evolve. In [Gon\c{c}alves-Landim-Toninelli '09] it was proved that the macroscopic density profile in the hydrodynamic limit is governed by the porous medium equation (PME), for initial densities uniformly bounded away from $0$ and $1$. In this paper we consider the more general case where the density can take those extreme values. In this context, the PME solutions display a richer behavior, like moving interfaces, finite speed of propagation and breaking of regularity. As a consequence, the standard techniques that are commonly used to prove this hydrodynamic limits cannot be straightforwardly applied to our case. We present here a way to generalize the \emph{relative entropy method}, by involving approximations of solutions to the hydrodynamic equation, instead of exact solutions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.