Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Algebraic torus actions on contact manifolds (1802.05002v3)

Published 14 Feb 2018 in math.AG and math.DG

Abstract: We prove the LeBrun-Salamon Conjecture in low dimensions. More precisely, we show that a contact Fano manifold X of dimension 2n+1 that has reductive automorphism group of rank at least n-2 is necessarily homogeneous. This implies that any positive quaternion-Kahler manifold of real dimension at most 16 is necessarily a symmetric space, one of the Wolf spaces. A similar result about contact Fano manifolds of dimension at most 9 with reductive automorphism group also holds. The main difficulty in approaching the conjecture is how to recognize a homogeneous space in an abstract variety. We contribute to such problem in general, by studying the action of algebraic torus on varieties and exploiting Bialynicki-Birula decomposition and equivariant Riemann-Roch theorems. From the point of view of T-varieties (that is, varieties with a torus action), our result is about high complexity T-manifolds. The complexity here is at most 1/2(dim X+5) with dim X arbitrarily high, but we require this special (contact) structure of X. Previous methods for studying T-varieties in general usually only apply for complexity at most 2 or 3.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube