Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantitative CLTs for symmetric $U$-statistics using contractions (1802.00394v4)

Published 1 Feb 2018 in math.PR

Abstract: We consider sequences of symmetric $U$-statistics, not necessarily Hoeffding-degenerate, both in a one- and multi-dimensional setting, and prove quantitative central limit theorems (CLTs) based on the use of {\it contraction operators}. Our results represent an explicit counterpart to analogous criteria that are available for sequences of random variables living on the Gaussian, Poisson or Rademacher chaoses, and are perfectly tailored for geometric applications. As a demonstration of this fact, we develop explicit bounds for subgraph counting in generalised random graphs on Euclidean spaces; special attention is devoted to the so-called `dense parameter regime' for uniformly distributed points, for which we deduce CLTs that are new even in their qualitative statement, and that substantially extend classical findings by Jammalamadaka and Janson (1986) and Bhattacharaya and Ghosh (1992).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.