Spatio-temporal transfer function conditions of positive realness for translation invariant lattice networks of interacting linear systems (1802.00185v1)
Abstract: This paper is concerned with networks of interacting linear systems at sites of a multidimensional lattice. The systems are governed by linear ODEs with constant coefficients driven by external inputs, and their internal dynamics and coupling with the other component systems are translation invariant. Such systems occur, for example, in finite-difference models of large-scale flexible structures manufactured from homogeneous materials. Using the spatio-temporal transfer function of this translation invariant network, we establish conditions for its positive realness in the sense of energy dissipation. The latter is formulated in terms of block Toeplitz bilinear forms of the input and output variables of the composite system. We also discuss quadratic stability of the network in isolation from the environment and phonon theoretic dispersion relations.