Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissipative Linear Stochastic Hamiltonian Systems (1806.10926v1)

Published 28 Jun 2018 in cs.SY, math.OC, and math.PR

Abstract: This paper is concerned with stochastic Hamiltonian systems which model a class of open dynamical systems subject to random external forces. Their dynamics are governed by Ito stochastic differential equations whose structure is specified by a Hamiltonian, viscous damping parameters and system-environment coupling functions. We consider energy balance relations for such systems with an emphasis on linear stochastic Hamiltonian (LSH) systems with quadratic Hamiltonians and linear coupling. For LSH systems, we also discuss stability conditions, the structure of the invariant measure and its relation with stochastic versions of the virial theorem. Using Lyapunov functions, organised as deformed Hamiltonians, dissipation relations are also considered for LSH systems driven by statistically uncertain external forces. An application of these results to feedback connections of LSH systems is outlined.

Citations (2)

Summary

We haven't generated a summary for this paper yet.