Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Applications of self-distributivity to Yang-Baxter operators and their cohomology (1801.08315v2)

Published 25 Jan 2018 in math.AT

Abstract: Self-distributive (SD) structures form an important class of solutions to the Yang--Baxter equation, which underlie spectacular knot-theoretic applications of self-distributivity. It is less known that one go the other way round, and construct an SD structure out of any left non-degenerate (LND) set-theoretic YBE solution. This structure captures important properties of the solution: invertibility, involutivity, biquandle-ness, the associated braid group actions. Surprisingly, the tools used to study these associated SD structures also apply to the cohomology of LND solutions, which generalizes SD cohomology. Namely, they yield an explicit isomorphism between two cohomology theories for these solutions, which until recently were studied independently. The whole story leaves numerous open questions. One of them is the relation between the cohomologies of a YBE solution and its associated SD structure. These and related questions are covered in the present survey.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)