Applications of self-distributivity to Yang-Baxter operators and their cohomology (1801.08315v2)
Abstract: Self-distributive (SD) structures form an important class of solutions to the Yang--Baxter equation, which underlie spectacular knot-theoretic applications of self-distributivity. It is less known that one go the other way round, and construct an SD structure out of any left non-degenerate (LND) set-theoretic YBE solution. This structure captures important properties of the solution: invertibility, involutivity, biquandle-ness, the associated braid group actions. Surprisingly, the tools used to study these associated SD structures also apply to the cohomology of LND solutions, which generalizes SD cohomology. Namely, they yield an explicit isomorphism between two cohomology theories for these solutions, which until recently were studied independently. The whole story leaves numerous open questions. One of them is the relation between the cohomologies of a YBE solution and its associated SD structure. These and related questions are covered in the present survey.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.