Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

TritanDB: Time-series Rapid Internet of Things Analytics (1801.07947v1)

Published 24 Jan 2018 in cs.DB

Abstract: The efficient management of data is an important prerequisite for realising the potential of the Internet of Things (IoT). Two issues given the large volume of structured time-series IoT data are, addressing the difficulties of data integration between heterogeneous Things and improving ingestion and query performance across databases on both resource-constrained Things and in the cloud. In this paper, we examine the structure of public IoT data and discover that the majority exhibit unique flat, wide and numerical characteristics with a mix of evenly and unevenly-spaced time-series. We investigate the advances in time-series databases for telemetry data and combine these findings with microbenchmarks to determine the best compression techniques and storage data structures to inform the design of a novel solution optimised for IoT data. A query translation method with low overhead even on resource-constrained Things allows us to utilise rich data models like the Resource Description Framework (RDF) for interoperability and data integration on top of the optimised storage. Our solution, TritanDB, shows an order of magnitude performance improvement across both Things and cloud hardware on many state-of-the-art databases within IoT scenarios. Finally, we describe how TritanDB supports various analyses of IoT time-series data like forecasting.

Citations (6)

Summary

We haven't generated a summary for this paper yet.