Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Equidistribution of toral eigenfunctions along hypersurfaces (1801.07858v2)

Published 24 Jan 2018 in math.AP, math-ph, math.MP, math.NT, and math.SP

Abstract: We prove a new quantum variance estimate for toral eigenfunctions. As an application, we show that, given any orthonormal basis of toral eigenfunctions and any smooth embedded hypersurface with nonvanishing principal curvatures, there exists a density one subsequence of eigenfunctions that equidistribute along the hypersurface. This is an analogue of the Quantum Ergodic Restriction theorems in the case of the flat torus, which in particular verifies the Bourgain-Rudnick's conjecture on $L2$-restriction estimates for a density one subsequence of eigenfunctions in any dimension. Using our quantum variance estimates, we also obtain equidistribution of eigenfunctions against measures whose supports have Fourier dimension larger than $d-2$. In the end, we also describe a few quantitative results specific to dimension $2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube