Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computation of the Maximum Likelihood estimator in low-rank Factor Analysis (1801.05935v1)

Published 18 Jan 2018 in math.OC, stat.CO, and stat.ML

Abstract: Factor analysis, a classical multivariate statistical technique is popularly used as a fundamental tool for dimensionality reduction in statistics, econometrics and data science. Estimation is often carried out via the Maximum Likelihood (ML) principle, which seeks to maximize the likelihood under the assumption that the positive definite covariance matrix can be decomposed as the sum of a low rank positive semidefinite matrix and a diagonal matrix with nonnegative entries. This leads to a challenging rank constrained nonconvex optimization problem. We reformulate the low rank ML Factor Analysis problem as a nonlinear nonsmooth semidefinite optimization problem, study various structural properties of this reformulation and propose fast and scalable algorithms based on difference of convex (DC) optimization. Our approach has computational guarantees, gracefully scales to large problems, is applicable to situations where the sample covariance matrix is rank deficient and adapts to variants of the ML problem with additional constraints on the problem parameters. Our numerical experiments demonstrate the significant usefulness of our approach over existing state-of-the-art approaches.

Citations (12)

Summary

We haven't generated a summary for this paper yet.