Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computation of the Maximum Likelihood estimator in low-rank Factor Analysis

Published 18 Jan 2018 in math.OC, stat.CO, and stat.ML | (1801.05935v1)

Abstract: Factor analysis, a classical multivariate statistical technique is popularly used as a fundamental tool for dimensionality reduction in statistics, econometrics and data science. Estimation is often carried out via the Maximum Likelihood (ML) principle, which seeks to maximize the likelihood under the assumption that the positive definite covariance matrix can be decomposed as the sum of a low rank positive semidefinite matrix and a diagonal matrix with nonnegative entries. This leads to a challenging rank constrained nonconvex optimization problem. We reformulate the low rank ML Factor Analysis problem as a nonlinear nonsmooth semidefinite optimization problem, study various structural properties of this reformulation and propose fast and scalable algorithms based on difference of convex (DC) optimization. Our approach has computational guarantees, gracefully scales to large problems, is applicable to situations where the sample covariance matrix is rank deficient and adapts to variants of the ML problem with additional constraints on the problem parameters. Our numerical experiments demonstrate the significant usefulness of our approach over existing state-of-the-art approaches.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.