Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Test Collection Construction via Active Learning (1801.05605v4)

Published 17 Jan 2018 in cs.IR

Abstract: To create a new IR test collection at low cost, it is valuable to carefully select which documents merit human relevance judgments. Shared task campaigns such as NIST TREC pool document rankings from many participating systems (and often interactive runs as well) in order to identify the most likely relevant documents for human judging. However, if one's primary goal is merely to build a test collection, it would be useful to be able to do so without needing to run an entire shared task. Toward this end, we investigate multiple active learning strategies which, without reliance on system rankings: 1) select which documents human assessors should judge; and 2) automatically classify the relevance of additional unjudged documents. To assess our approach, we report experiments on five TREC collections with varying scarcity of relevant documents. We report labeling accuracy achieved, as well as rank correlation when evaluating participant systems based upon these labels vs.\ full pool judgments. Results show the effectiveness of our approach, and we further analyze how varying relevance scarcity across collections impacts our findings. To support reproducibility and follow-on work, we have shared our code online: https://github.com/mdmustafizurrahman/ICTIR_AL_TestCollection_2020/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Md Mustafizur Rahman (4 papers)
  2. Mucahid Kutlu (23 papers)
  3. Tamer Elsayed (22 papers)
  4. Matthew Lease (57 papers)
Citations (13)