Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Homogeneous length functions on groups (1801.03908v2)

Published 11 Jan 2018 in math.GR, math.FA, math.GT, and math.MG

Abstract: A pseudo-length function defined on an arbitrary group $G = (G,\cdot,e, (\,){-1})$ is a map $\ell: G \to [0,+\infty)$ obeying $\ell(e)=0$, the symmetry property $\ell(x{-1}) = \ell(x)$, and the triangle inequality $\ell(xy) \leqslant \ell(x) + \ell(y)$ for all $x,y \in G$. We consider pseudo-length functions which saturate the triangle inequality whenever $x=y$, or equivalently those that are homogeneous in the sense that $\ell(xn) = n\,\ell(x)$ for all $n\in\mathbb{N}$. We show that this implies that $\ell([x,y])=0$ for all $x,y \in G$. This leads to a classification of such pseudo-length functions as pullbacks from embeddings into a Banach space. We also obtain a quantitative version of our main result which allows for defects in the triangle inequality or the homogeneity property.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)