Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Winograd Schema - Knowledge Extraction Using Narrative Chains (1801.02281v1)

Published 8 Jan 2018 in cs.AI

Abstract: The Winograd Schema Challenge (WSC) is a test of machine intelligence, designed to be an improvement on the Turing test. A Winograd Schema consists of a sentence and a corresponding question. To successfully answer these questions, one requires the use of commonsense knowledge and reasoning. This work focuses on extracting common sense knowledge which can be used to generate answers for the Winograd schema challenge. Common sense knowledge is extracted based on events (or actions) and their participants; called Event-Based Conditional Commonsense (ECC). I propose an approach using Narrative Event Chains [Chambers et al., 2008] to extract ECC knowledge. These are stored in templates, to be later used for answering the WSC questions. This approach works well with respect to a subset of WSC tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.