Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Dynamic and granular loss reserving with copulae (1801.01792v1)

Published 5 Jan 2018 in econ.EM and stat.AP

Abstract: An intensive research sprang up for stochastic methods in insurance during the past years. To meet all future claims rising from policies, it is requisite to quantify the outstanding loss liabilities. Loss reserving methods based on aggregated data from run-off triangles are predominantly used to calculate the claims reserves. Conventional reserving techniques have some disadvantages: loss of information from the policy and the claim's development due to the aggregation, zero or negative cells in the triangle; usually small number of observations in the triangle; only few observations for recent accident years; and sensitivity to the most recent paid claims. To overcome these dilemmas, granular loss reserving methods for individual claim-by-claim data will be derived. Reserves' estimation is a crucial part of the risk valuation process, which is now a front burner in economics. Since there is a growing demand for prediction of total reserves for different types of claims or even multiple lines of business, a time-varying copula framework for granular reserving will be established.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.