Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Multilinear Structure of ReLU Networks (1712.10132v2)

Published 29 Dec 2017 in cs.LG

Abstract: We study the loss surface of neural networks equipped with a hinge loss criterion and ReLU or leaky ReLU nonlinearities. Any such network defines a piecewise multilinear form in parameter space. By appealing to harmonic analysis we show that all local minima of such network are non-differentiable, except for those minima that occur in a region of parameter space where the loss surface is perfectly flat. Non-differentiable minima are therefore not technicalities or pathologies; they are heart of the problem when investigating the loss of ReLU networks. As a consequence, we must employ techniques from nonsmooth analysis to study these loss surfaces. We show how to apply these techniques in some illustrative cases.

Citations (51)

Summary

We haven't generated a summary for this paper yet.