Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications (1712.08966v2)

Published 24 Dec 2017 in stat.ME

Abstract: Latent factor models are widely used to measure unobserved latent traits in social and behavioral sciences, including psychology, education, and marketing. When used in a confirmatory manner, design information is incorporated, yielding structured (confirmatory) latent factor models. Motivated by the applications of latent factor models to large-scale measurements which consist of many manifest variables (e.g. test items) and a large sample size, we study the properties of structured latent factor models under an asymptotic setting where both the number of manifest variables and the sample size grow to infinity. Specifically, under such an asymptotic regime, we provide a definition of the structural identifiability of the latent factors and establish necessary and sufficient conditions on the measurement design that ensure the structural identifiability under a general family of structured latent factor models. In addition, we propose an estimator that can consistently recover the latent factors under mild conditions. This estimator can be efficiently computed through parallel computing. Our results shed lights on the design of large-scale measurement and have important implications on measurement validity. The properties of the proposed estimator are verified through simulation studies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.