Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Packing coloring of some undirected and oriented coronae graphs (1506.07248v1)

Published 24 Jun 2015 in cs.DM

Abstract: The packing chromatic number $\pcn(G)$ of a graph $G$ is the smallest integer $k$ such that its set of vertices $V(G)$ can be partitioned into $k$ disjoint subsets $V_1$, \ldots, $V_k$, in such a way that every two distinct vertices in $V_i$ are at distance greater than $i$ in $G$ for every $i$, $1\le i\le k$. For a given integer $p \ge 1$, the generalized corona $G\odot pK_1$ of a graph $G$ is the graph obtained from $G$ by adding $p$ degree-one neighbors to every vertex of $G$. In this paper, we determine the packing chromatic number of generalized coronae of paths and cycles. Moreover, by considering digraphs and the (weak) directed distance between vertices, we get a natural extension of the notion of packing coloring to digraphs. We then determine the packing chromatic number of orientations of generalized coronae of paths and cycles.

Citations (24)

Summary

We haven't generated a summary for this paper yet.