Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking Decoupled Neural Interfaces with Synthetic Gradients (1712.08314v3)

Published 22 Dec 2017 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: Artifical Neural Networks are a particular class of learning systems modeled after biological neural functions with an interesting penchant for Hebbian learning, that is "neurons that wire together, fire together". However, unlike their natural counterparts, artificial neural networks have a close and stringent coupling between the modules of neurons in the network. This coupling or locking imposes upon the network a strict and inflexible structure that prevent layers in the network from updating their weights until a full feed-forward and backward pass has occurred. Such a constraint though may have sufficed for a while, is now no longer feasible in the era of very-large-scale machine learning, coupled with the increased desire for parallelization of the learning process across multiple computing infrastructures. To solve this problem, synthetic gradients (SG) with decoupled neural interfaces (DNI) are introduced as a viable alternative to the backpropagation algorithm. This paper performs a speed benchmark to compare the speed and accuracy capabilities of SG-DNI as opposed to a standard neural interface using multilayer perceptron MLP. SG-DNI shows good promise, in that it not only captures the learning problem, it is also over 3-fold faster due to it asynchronous learning capabilities.

Summary

We haven't generated a summary for this paper yet.