Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer Spiking Neural Networks based on Spike-Timing-Dependent Plasticity (2211.05412v2)

Published 10 Nov 2022 in cs.NE, cs.AI, and cs.ET

Abstract: Spiking neural networks (SNNs) are a viable alternative to conventional artificial neural networks when resource efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains which eliminates multiplication operations. The training of SNNs has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of all neurons, including the hidden ones, from the output error. By incorporating this desire value into the local STDP weight update, we can efficiently capture the neuron dynamics while minimizing the global error and attaining a high classification accuracy. That makes desire backpropagation a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. In addition, by eliminating a multiplication during the backward pass, we reduce computational complexity and balance arithmetic resources between forward and backward pass, making desire backpropagation a candidate for training on low-resource devices.

Citations (2)

Summary

We haven't generated a summary for this paper yet.