Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Adversarial Networks (1712.07008v3)

Published 19 Dec 2017 in cs.IT, cs.CR, cs.GT, cs.LG, math.IT, and stat.ML

Abstract: We propose a data-driven framework for optimizing privacy-preserving data release mechanisms to attain the information-theoretically optimal tradeoff between minimizing distortion of useful data and concealing specific sensitive information. Our approach employs adversarially-trained neural networks to implement randomized mechanisms and to perform a variational approximation of mutual information privacy. We validate our Privacy-Preserving Adversarial Networks (PPAN) framework via proof-of-concept experiments on discrete and continuous synthetic data, as well as the MNIST handwritten digits dataset. For synthetic data, our model-agnostic PPAN approach achieves tradeoff points very close to the optimal tradeoffs that are analytically-derived from model knowledge. In experiments with the MNIST data, we visually demonstrate a learned tradeoff between minimizing the pixel-level distortion versus concealing the written digit.

Citations (80)

Summary

We haven't generated a summary for this paper yet.