Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Models for Detecting Wikidata Vandalism with Stacking - Team Honeyberry Vandalism Detector at WSDM Cup 2017 (1712.06921v1)

Published 19 Dec 2017 in cs.IR

Abstract: The WSDM Cup 2017 is a binary classification task for classifying Wikidata revisions into vandalism and non-vandalism. This paper describes our method using some machine learning techniques such as under-sampling, feature selection, stacking and ensembles of models. We confirm the validity of each technique by calculating AUC-ROC of models using such techniques and not using them. Additionally, we analyze the results and gain useful insights into improving models for the vandalism detection task. The AUC-ROC of our final submission after the deadline resulted in 0.94412.

Citations (5)

Summary

We haven't generated a summary for this paper yet.